МЕТОД ПОКООРДИНАТНОГО СПУСКА

Каретников Ф.В. Бигаева Л.А., к.ф.-м.н.,доцент БФ УУНиТ, г.Бирск, РБ

Аннотация: Метод покоординатного спуска — это эффективный алгоритм оптимизации, основанный на последовательном поиске оптимальных значений переменных вдоль каждой координатной оси. различных областях, применяется таких математическое как программирование, линейное программирование нелинейное И программирование. В статье рассматривается принцип работы метода, его применение.

Ключевые слова: численные методы, методы оптимизации, покоординатный спуск, алгоритм минимизации

Метод покоординатного спуска относится к группе прямых методов и основан на многократном применении алгоритмов многомерной оптимизации. Суть метода заключается в пошаговом приближении к точке минимума функции путём последовательных вариаций одной из координат при фиксированных значениях остальных. Рассмотрим алгоритм данного метода детальнее.

Пусть в n-мерном пространстве задана точка $X^{(0)}$ с координатами $X_1^{(0)}$, $X_2^{(0)}$, ..., $X_n^{(0)}$, являющаяся точкой начального приближения к минимуму функции $f(x_1^{(0)}, x_2^{(0)}, ..., x_n^{(0)})$. Зафиксируем все координаты, кроме первой – X_1 . Получим $f_1(x_1) = f(x_1, x_2, ..., x_n)$ — функцию одной переменной. Для функции $f_1(x_1)$ решим задачу одномерной оптимизации и найдем значение $X_1^{(1)}$ — первую координату точки первого приближения к минимуму. Зафиксируем теперь все координаты, кроме X_2 , и решим задачу одномерной оптимизации для функции $f_2(x_2) = f(x_1^{(1)}, x_2^{(0)}, ..., x_n^{(0)})$. Результатом решения будет $X_2^{(1)}$ — вторая

координата точки первого приближения к минимуму. Продолжая описанный процесс перебора переменных, получим все координаты $\mathbf{x_1^{(1)}}, \mathbf{x_2^{(1)}}, \dots, \mathbf{x_n^{(1)}}$ точки первого приближения $\mathbf{X^{(1)}}$. На этом первая итерация алгоритма завершается. Вторая и все последующие итерации алгоритма организуются аналогичным образом. Итерационный процесс завершается при выполнении условия близости точек, найденных на двух последовательных итерациях с номерами $\mathbf{I} \times \mathbf{I} + \mathbf{1}$:

$$\sqrt{\sum_{k=1}^{n} \left(x_k^{(i+1)} - x_k^{(i)} \right)^2} \le s_k$$

где ε — малая величина, характеризующая точность расчетов[1, 2].

Таким образом, метод покоординатного спуска приводит задачу о нахождении наименьшего значения функции многих переменных к многократному решению одномерных задач оптимизации по каждому параметру[3].

Данный метод легко показать геометрически для случая функции двух переменных $\mathbf{Z} = \mathbf{f}(\mathbf{x}, \mathbf{y})$, описывающей некоторую поверхность в трехмерном пространстве. На рис. 1 нанесены линии уровня этой поверхности. Процесс оптимизации в этом случае проходит следующим образом. Точка \mathbf{M}_0 описывает начальное приближение. Проводя спуск по координате x, попадем в точку \mathbf{M}_1 . Далее, двигаясь параллельно оси ординат, придем в точку \mathbf{M}_2 и т.д.

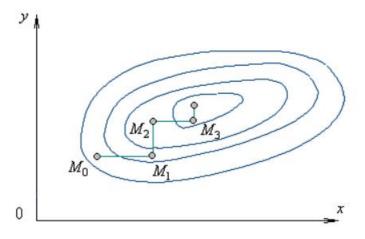


Рис.1. Линии уровня поверхности z = f(x, y)

Важным здесь является вопрос о сходимости данного процесса оптимизации. Иначе говоря, будет ли последовательность значений целевой функции сходиться к её наименьшему значению в данной области? Это зависит от видафункции и выбора начального приближения.

Для функции двух переменных очевидно, что метод неприменим в случае наличия изломов в линиях уровня. Поскольку поверхности с изломами встречаются в практике, то при использовании метода покоординатного спуска необходимо убедиться, чтозадача не имеет этого недостатка.

Для гладких функций при удачно выбранном начальном приближении (в некоторой окрестности минимума) процесс сходится к минимуму.

Фиксируем $y = y_0$:

Находим производную по
$$x: \frac{\partial z}{\partial x} = 6x - 2y_0 + 1$$

Приравнивая производную к нулю, находим минимальный x: $x = \frac{2y_0 - 1}{6}$

Теперь находим y. Фиксируем $x = x_0$

$$z(x, y_0) = 3x_0^2 - 2x_0y + 4y^2 + x_0 - y$$
$$\frac{\partial z}{\partial y} = -2x_0 + 8y - 1$$
$$y = \frac{2x_0 + 1}{8}$$

Теперь будем чередовать минимизацию по переменным до сходимости:

Возьмём за начальное приближение $x_0 = 0$, $y_0 = 0$

i		Xi	y i	Z	усл ост
	0	0	0	0	нет
	1	-0,16667	0,125	-0,10417	нет
	2	-0,125	0,083333	-0,11285	нет
	3	-0,13889	0,09375	-0,11357	нет

4	-0,13542	0,090278	-0,11363	нет
5	-0,13657	0,091146	-0,11364	нет
6	-0,13628	0,090856	-0,11364	да

Т.к. в следующих итерациях изменения x и y становятся меньше, то результат сходится к точке (-0,13628; 0,090856), отсюда следует что минимум функции равен:z = -0,11364.

Реализуем алгоритм с помощью программного кода на языке программирования python:

```
import math
defcoordinate descent(func, x0=0, y0=0, epsilon=0.0001, step=1e-5,
max iter=1000):
    x, y = x0, y0
    for iteration inrange(max iter):
        x \text{ old}, y \text{ old} = x, y
        deffunc x(x val):
            return func(x val, y)
        x = minimize brute force(func x, x, step)
        deffunc y(y val):
            return func(x, y val)
        y = minimize brute force(func y, y, step)
        ifabs(x - x old) < epsilon andabs(y - y old) < epsilon:</pre>
            break
    return x, y, func(x, y)
defminimize brute force(func 1d, start, step, search range=1.0):
    x min = start
    min val = func 1d(start)
     for offset inrange(-int(search range / step), int(search range /
step) + 1:
        x candidate = start + offset * step
        candidate val = func 1d(x candidate)
        if candidate val < min val:</pre>
            min val = candidate val
            x \min = x \text{ candidate}
    return x min
defZ(x, y):
    return3 * math.pow(x, 2) - 2 * x * y + 4 * math.pow(y, 2) + x - y
x min, y min, z min = coordinate descent(Z, x0=0, y0=0, epsilon=0.0001,
step=1e-5)
print(f"Минимумдостигаетсявточке: x = \{x \text{ min}:.5f\}, y = \{y \text{ min}:.5f\}")
```

```
print(f"Значение функции в точке минимума: Z = \{z \text{ min:.}10f\}")
```

Результат работы программы:

```
Минимум достигается в точке: x = -0.13637, y = 0.09091
Значение функции в точке минимума: Z = -0.1136363635
PS C:\Users\dog23\OneDrive\Paбочий стол\sandboxes\test_code_pyth>
```

Алгоритм координатного спуска популярен ввидупростоты реализации, но в то же время свойство побуждает исследователей игнорировать их в пользу более сложных методов, которые устраняют очевидные недостатки этого метода.

Литература

- 1. Бахвалов, Н.С. Численные методы/ Н.С.Бахвалов, Н.П.Жидков, Г.М.Кобельков. 3-е изд., доп. и перераб. М.: БИНОМ. Лаборатория знаний, 2004. Литература.
- 2. Бигаева, Л. А. Курс лекций по численным методам : Учебное пособие для студентов физико-математического факультета / Л. А. Бигаева, И. И. Латыпов. Бирск : Башкирский государственный университет, 2018. 138 с. EDN UMYXHX.
- 3. Зайцев В. В. Численные методы для физиков. Нелинейные уравнения и оптимизация: учебное пособие. Самара, 2005г. 86с.