
LINE DRAWING ALGORITHM: A COMPARATIVE ANALYSIS OF DDA, 

BRESENHAM, AND WU ALGORITHMS 

 

Zharnasek D.A., 2nd year student,   

Moyseyonok N. S., senior lecturer, 

Belarussian State University, Minsk, Belarus 

 

Abstract: The report discusses some of the most popular methods of this 

process, namely line rasterisation using the DDA-line algorithm, Bresenham’s line 

algorithm and the Xiaolin Wu's line algorithm as examples. The text describes the 

characteristics of each of the methods and gives their action structures in a step-by-

step format. It shows that Bresenham's algorithm remains the standard due to its 

speed and agility, while Xiaolin Wu's algorithm is the basic method when antialiasing 

is required. The main purpose of the article is to describe in simple words complex 

computer graphics algorithms, without which it is difficult to imagine simple things: 

from basic graphic editors to GPS maps. 

Key words: algorithm, rasterization, digital differential analyzer, Bresenham's 

line algorithm, Xiaolin Wu's line algorithm. 

 

The process of converting mathematical equations into graphic images has 

become a basis for different applications from our daily life. Rasterization is used for 

rendering a text character, drawing digital pictures, as well as creating navigational 

maps. It is a vital part that connects vector graphics and pixel-based displays, which 

is based on efficient algorithms. 

Every day, without noticing, we encounter graphics. For example, when 

printing text, each letter is a separate object. The computer models the scene and then 

generates a final image that can be printed or displayed on a monitor. It is logical that 

first we work with vector graphics and then with raster graphics, i.e. with pixels. 

Methods of image conversion from vector graphics to raster (further rasterization) is 

a very important algorithm when working with computer graphics. 



As with other methods, it is easier to start with a simple case. In the case of 

rasterization, it is the rasterization of a line. When working with horizontal, vertical 

and 45° inclined lines, the choice of raster elements is obvious. Otherwise, selecting 

the right pixels is already a complex and important task.   

For further understanding of the algorithms, let us consider some notations and 

concepts. Let a segment have a beginning and an end (points �(��, ��) and 

�(��, ��)). We will say that the segment belongs to the �-octant angle if vector �������⃗  

belongs to this octant. 

To unite a set of pixels into a single set, the concept of connectivity is used to 

determine which pixels are neighboring pixels. Two pixels are called 4-connected if 

|�� −  ��| +  |�� −  ��| ≤ 1 is satisfied for pixels (��, ��), (��, ��), ��, ��, ��, �� ∈ ℤ, 

and 8-connected if for the same pixels, two inequalities are satisfied: |�� −  ��| ≤

1, |�� −  ��| ≤ 1. 

DDA-line algorithm is one of the first segment rasterization algorithms 

proposed in the 1960s. The abbreviation DDA stands for digital differential analyzer. 

The algorithm always builds an 8-connected segment. 

Let us consider a non-symmetric variant of this algorithm [1]. It consists of the 

following actions: 

1. Round the end points. Introduce the following notations: ������ =

[��], ������ = [��] and ���� = [��], ���� = [��]. 

2. Calculate the number of steps � = max {����� −  �������, ����� −  �������}. 

The number of pixels will be equal to � + 1. 

3. If � = 0, then begin and end of line match. Return point (������, ������) and 

end algorithm. 

4. If � > 0. Create two secondary variables �, � ∈ ℝ . Primarily, they equal �� 

and �� respectively. 

5. At each ���  step, �= 2, � + 1����������, change the value of secondary variables: 

� ≔ � + (�� − ��) �⁄ , �:= � + (�� − ��) �⁄ . 



6. Coordinate of the ���  pixel will be equal: (��, ��) = ([� + (�� − ��) 2⁄ ],

[� + (�� − ��) 2⁄ ]) , the value of the variable x is taken at step �. 

It is not difficult to see that the result of the algorithm will be a set of points of 

the form: 

(��, ��) = ([�� + (�− 1)(�� − ��) �⁄ ], [�� + (�− 1)(�� − ��) �⁄ ]), �=

1, � + 1����������. 

In this approach, the points (��, ��) and (����, ����) match �������, ������� 

and (���� , ���� ) respectively. 

 There is also another variation of the algorithm, the symmetric one. Unlike its 

non-symmetric “sibling” (Figure 1), a different formula for auxiliary variables is 

used: 

� ≔ � + ����� − ������� �⁄ , �:= � + (���� − ������) �⁄ . 

 

Figure 1 – symmetric (red) and non-symmetric (blue) DDA-line algorithms 

 

 The DDA-line algorithm, although it is simple, is not currently used in modern 

computer graphics because of its low performance. It is an illustrative example of a 

rasterization algorithm. 

As mentioned above, the DDA-line algorithm is not optimal. This is due to the 

work with non-integer numbers. To solve this problem in 1962 Jack Elton Bresenham 

invented another algorithm. The main idea is to calculate the ordinate, the pixels 

closest to the original segment. The algorithm works for segments that are in the 1st 

octant angle, otherwise it is necessary to make the appropriate transformation to 

move the segment to the desired octant angle. 

The algorithm consists of the following steps [2]: 



1. Let the beginning of the line be located at the origin and the end be 

(��, ��), ��, �� > 0. Mark the origin as the first pixel. 

2. Introduce secondary variables: �≔ 1, �� =  2�� − ��. 

3. For the (�+ 1)��  pixel, calculate �� using the formula: 

�� =  �
���� + 2(�� − ��),  ���� ≥ 0,
���� + 2��,                ���� < 0.

� 

4. Calculate the ordinate increment of the current pixel:  

∆�� =  �
1,  ���� ≥ 0,
0,  ���� < 0.

� 

5. Calculate the coordinate of the next pixel: (����, ����) = (��+ 1, ��+ ∆��). 

6. If �=  ��, then the algorithm completes its work by returning the set of 

received pixels. Otherwise �∶=  � +  1 and go back to step 3rd. 

The algorithm results in an 8-connected segment, since the increment does not 

exceed one (|�� −  ��| ≤ 1, |�� −  ��| ≤ 1). 

It is also worth noting that in case the initial coordinates are not integers, they 

can be pre-rounded and then we can start the algorithm.  

This algorithm is still used half a century later due to its simplicity and speed. 

Bresenham's line algorithm has influenced the work of modern video cards, as well as 

the appearance of new rasterization algorithms. One of the algorithms similar in time 

to Bresenham's algorithm is the Xiaolin Wu's line algorithm (further Wu's line 

algorithm) for rasterization with antialiasing. 

To understand how rasterization with antialiasing works, we need to introduce 

some additional definitions. Grayscale is a real number �(�, �) from [0;1] or integer 

number from [0;� − 1]. The intensity of a pixel (�, �) is the level of influence of 

some object on its colouring. Refer the intensity by �(�, �), and � takes a real value in 

the range from [0 ;1]. Then the grayscale for each pixel can be found as: �(�, �) =

 (�− 1)���  +  ��. Assuming that �� (segment colour) is white, and ���  

(background colour) is the darkest pixel or the smallest number, get that �(�, �) =

 (�− 1)��� . 



The Wu's line algorithm provides a simple and efficient means of smoothing 

lines and curves based on visual error correction. This approach, although based on 

visual representation, is equivalent to convolution of a rectangular filter over two 

pixels located between lines, where the original signal has support in the ‘true’ pixel 

for each line. 

Wu's line algorithm for rasterizing a black segment sound the following way 

[3]: 

1. Let the beginning of the line be located at the origin and the end be 

(��, ��), ��, �� > 0. Mark the origin as the first pixel. 

2. The coefficient � of raster grid splitting and the number of grey shades � 

are determined. 

3. Introduce an iteration variable � ∈ ℕ�. The starting value is D≔ 0. Each step 

will increase it by � = [��� ��⁄ ] . 

4. Introduce secondary variables ��, ��, ��, �� ∈ ℕ� . They will store 

respectively the abscissa and ordinate of the current start point and the abscissa and 

ordinate of the current end point. Assign values to variables: �� ≔ 0, �� ≔ ��, �� ≔

0, �� ≔ ��. 

5. The pixels at the beginning and end of the segment are black: �(0,0) =

�(��, ��) = 0. 

6. The abscissas of the current start and end are approaching each other, i.e. 

�� ≔ �� + 1, �� ≔ �� − 1. If after this operation it turns out that �� > ��, terminate 

the algorithm. 

7. � ≔ � + �. 

8. If � ≥ �, then the ordinates of the current start and end points converge: 

�� ≔ �� + 1, �� ≔  �� − 1, and the iteration variable itself is redefined: � ∶=  � −

 �. 

9. The colour of the new current end and start points is determined: 

�(��, ��) = �(��, ��) = [�� �⁄ ]. Also define two adjacent pixels: �(��, �� + 1) =

�(��, �� − 1) = � − 1 − �(��, ��). 

10. Return to step 6th. 



This algorithm is widely used in various fields of graphic visualisation due to 

its ability to produce smooth and visually pleasing lines. In graphic editors such as 

Paint, Adobe Photoshop and Inkscape, the Wu’s algorithm allows you to achieve 

high quality rendering while minimising the effect of pixelation. This is especially 

important when working with slanted lines and fine details, where antialiasing makes 

the image look more natural and professional. This makes such programmes 

indispensable for designers, artists and users involved in image processing. 

Line drawing algorithms play an important role in computer graphics and 

various programming areas. The considered algorithms, such as the DDA-line 

algorithm, Bresenham's line algorithm and Wu's line algorithm, demonstrate different 

approaches to solve the introduced problem. They differ in their computational 

efficiency, ease of implementation and quality of the result obtained. Bresenham's 

algorithm deserves special attention due to its simplicity, speed and lack of floating-

point operations, which makes it standard for raster graphics tasks. Wu's line 

algorithm, based on Bresenham's, helps in antialiasing work without compromising 

on speed and simplicity. 

The study of algorithms for drawing line helps to understand the basic 

principles of graphical systems and lays the foundation for more complex operations, 

such as the construction of figures and the realisation of three-dimensional objects. 

 

References: 

1. DDA Line generation Algorithm in Computer Graphics [Electronic 

resource]. – Mode of access: https://www.geeksforgeeks.org/dda-line-generation-

algorithm-computer-graphics. – Date of access: 18.11.2024. 

2. Flanagan C. The Bresenham Line-Drawing Algorithm [Electronic resource] / 

C. Flanagan. – Mode of access: 

https://www.cs.helsinki.fi/group/goa/mallinnus/lines/bresenh.html. – Date of access: 

18.11.2024. 

3. Wu, X. An efficient antialiasing technique / X. Wu // Computer graphics. – 

1991. – Vol. 25, No. 4. – p. 143–152. – DOI: 10.1145/127719.122734. 


